Solid state NMR spectroscopy: basic principles and applications in heterogeneous catalysis

Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences

BIKE-MSCA-ITN Workshop

Sofia, 24 June 2020

- Solid state NMR basic principles and methods
- SS NMR characterization of zeolites Zeolite beta, Ag-Beta, Al-ZSM5 and Ga-ZSM5
- SS NMR characterization of polyoxometalate/MCM-41 hybrid catalyst

I. Nuclear interactions and the magic in NMR

- NMR measures the interactions of the nuclei with their environment
 - NMR spectrum information about structure, dynamics and interactions within the investigated samples at atomic (molecular) level
 - Nuclear interactions depend on state of matter

¹³C NMR spectrum of alanine in solution

l > 0

 $\mu = \gamma I$

I. Nuclear interactions and the magic in NMR

- RF field B₁
- NMR phenomenon

- Sample structure and dynamics
- NMR spectrum

I. Why we need a Magic in NMR of solids?

Nuclear interactions are generally anisotropic (orientation dependent)

- Solution: fast molecular tumbling results in time averaging of the orientation dependent interactions
- Solids: restricted motion results in characteristic splitting and/or broadening of resonance lines

I. How the magic works in NMR: magic angle spinning NMR

Anisotropic interactions: strong NMR line broadening

Magic angle spinning (MAS)

- Reduces/eliminates signal broadening due to chemical shift anisotropy, dipolar and first order quadrupole interactions
- Better resolution
- Higher sensitivity

3.2 mm; 24 kHz ⇔ 240 m/s (864 km/h)

- 4 mm => 15 kHz
- 3.2 mm => 25 kHz
- 2.5 mm => 35 kHz
- 1.2 mm => 75 kHz
- 0.7 mm => 110 kHz

I. The Magic Result

- Heteronuclear ²⁹Si, ²⁷Al, ¹¹⁹Sn, ³¹P, ²³Na, ¹³C, ¹⁵N, etc.
- Magic angle (54.7°) spinning: 15 25 kHz, fast and ultrafast MAS at 65 80 kHz.
- High-power decoupling: homo- and heteronuclear; to remove dipolar interactions with ¹H, enhancing spectral resolution
- Cross-polarization (CP): significant improvement in sensitivity
- ¹H spectra: ultrafast MAS at 65 80 kHz, special decoupling schemes (FSLG, PMLG, DUMBO)
- 2D ¹H→¹³C CP HETCOR experiments
- 2D ¹H-¹H experiments under fast MAS
- NMR crystallography combination of ssNMR and first principle calculations

Cambridge Sequential Total Energy Package (CASTEP): predicts key NMR properties of molecules and solid state materials from first principles calculations without the need for any empirical parameter.

Solid state NMR can answer the following questions:

- What is the chemical structure of the catalytic system
- Is the material/active phase crystalline or amorphous
- Structural features of catalyst framework
- Characterization of surface sites: type of surface sites, framework and extra-framework species
- Local structure of particles during the synthesis of solid catalysts
- Investigation of reaction mechanism catalyzed by solid materials

Advantages:

- Non-destructive and non-invasive technique
- Quantitative and selective
- Information about structure as well as dynamics at molecular and supramolecular level

II. SS NMR – Characterization of zeolite based catalysts

- The zeolite framework is composed of primary building units of tetrahedral AlO₄ and SiO₄ building blocks sharing oxygen ions
- Cations (H⁺, Na⁺, NH₄⁺, Ag⁺, transition metals) located inside the channels/pores, to balance the negative charges in the framework

II. Characterization of zeolite structure: type of Al coordination

- Parent zeolite beta, HB
- > Ag modified zeolite beta, AgB, obtained by solid state ion exchange

²⁷AI MAS NMR spectra

[FAL]:[EFAL] = 78:22

- Al^{IV} tetrahedral framework Al
- Al^{VI} octahedrally coordinated species
- Al^v pentacoordinated or disturbed tetrahedral sites
- Six-coordinated EFAI [AI(OH)₃.3H₂O]
- Defect framework octahedral sites of three-coordinated framework Al species with 3 adsorbed H₂O molecules

II. Changes in zeolite structure

²⁷AI MAS NMR spectra

Transformation of EFAI species to FAI:

Involvement of the silanol groups originating either from the opening of the SiOHAI bridges or from the silanol groups in the vicinity of the framework defect AI sites

II. Quantitative distribution of Si units and calculation of Si:Al ratio

T. Todorova, P. Shestakova, T. Petrova, M. Popova, H. Lazarova, Y. Kalvachev, J. Mater.Sci. (2020), accepted.

II. Quantitative distribution of Si units and calculation of Si:Al ratio

T. Todorova, P. Shestakova, T. Petrova, M. Popova, H. Lazarova, Y. Kalvachev, J. Mater.Sci. (2020), accepted.4

III. Polyoxometalate-modified mesoporous silicas as efficient catalysts for renewable levulinic acid esterification

Polyoxometalates (POMs): versatile class of metal-oxygen clusters

Keggin Heteropolyanion

α-[PW₁₂O₄₀]³⁻

- V(V), Mo(VI) or W(VI) and O
- High negative charge
- Dynamic solution behavior
- Coordination sites
- Brønsted acids

Applications: catalysis, electrochemistry,

biomedicine, materials science

Lewis metal substituted POMs

Binuclear Zr^{IV} substituted Keggin POM (ZrK2:2)

• Combining the Brønsted acidity of POM with the Lewis acidity of the metal center

P. Shestakova, M. Popova, H. Lazarova, T. Parac-Vogt, T. K. N. Luong, I. Trendafilova, J. Mihály, Á. Szegedi, Appl.Catal. A-Gen, submitted. 15

III. Preparation of ZrK2:2/MCM-41 hybrid catalysts

Bulk POM catalysts: low surface area, agglomeration, low reusability <u>Supported POM catalyst</u>: high surface area, dispersion, preservation of active sites

Direct synthesis

Incipient wetness impregnation

Insight into:

- POM stability during synthesis, template removal, impregnation and reaction
- Structural characteristics and transformations of the MCM-41 silica matrix
- Leaching of the active phase during reaction

NMR techniques:

- Single pulse ³¹P and ¹H \rightarrow ³¹P CP MAS NMR spectra
- Single pulse ²⁹Si and ¹H \rightarrow ²⁹Si CP MAS NMR spectra
- ¹H, ¹³C and ³¹P liquid state NMR spectra of reaction mixture

Insight into ZrK2:2 stability during synthesis and template removal

Type of ZrK2:2 species in silica framework

• Single pulse ³¹P and ¹H \rightarrow ³¹P CP MAS spectra

Type of ZrK2:2 species in silica framework

• Single pulse ³¹P and ¹H \rightarrow ³¹P CP MAS spectra

Type of ZrK2:2 species in silica framework

• Single pulse ³¹P and ¹H \rightarrow ³¹P CP MAS spectra

Structural transformations of MCM-41 silica framework

Single pulse ²⁹Si MAS spectra

Calcination

- Condensation of Si-OH
- Formation of highly crosslinked Q⁴ units
- Consolidation of silica framework

 $2 \equiv SiOH \rightarrow \equiv Si-O-Si \equiv + H_2O$

Extraction

- Dissociation of Si-O-Si bridges
- Formation of Si-OH groups
- Silica framework with lower degree of condensation

III. ZrK2:2/MCM-41 hybrid catalysts obtained by post synthesis method

Type of ZrK2:2 species in silica framework

• Single pulse ³¹P MAS spectrum

- ¹H→³¹P CP MAS spectrum
- Preservation of ZrK2:2 structure after impregnation
- Two types of ZrK2:2 species

III. ZrK2:2/MCM-41 hybrid catalysts obtained by post synthesis method

ZrPM-NH₂(PS) <u>Characterization of the silica framework</u>

-160

III. Esterification of levulinic acid with ethanol and octanol

Catalytic activity of the ZrK2:2/MCM-41 hybrid catalysts

III. Catalytic stability and reuse

Catalytic stability of the ZrK2:2/MCM-41 hybrid catalysts

Catalyst	LA/EtOH in first cycle, %	LA/EtOH in third cycle, %	LA/octanol first cycle, %	LA/octanol in third cycle %
ZrPM(DS-E)	69.2	64.5	76.7	74.9
ZrPM(DS-C)	64.5	58.9	69.3	62.3
ZrPM-NH ₂ (PS)	25.8	16.1	10.6	7.8

-13.6 -15.3

³¹P spectrum of the reaction mixture

Leaching of the active phase

ZrPM-NH₂(PS) الاحمادية والطرطين وأربان المراجر المتلقين المتناقصين وأرا

No leaching ZrPM(DS-C)

No leaching

ZrPM(DS-E)

	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·		·
	10	0	-10	-20	-30	-40	-50	ppm 6

III. NMR study of ZrK2:2/MCM-41 hybrid catalysts

CONCLUSIONS

- MCM-41 silica matrix is a suitable host for deposition of POMs by both methods: direct synthesis and post-synthesis impregnation
- Extraction of the template proceeded with preservation of the intact POM structure, while calcination resulted in collapse of the Keggin structure
- Polyphosphoric acids and metal (W, Zr) oxide species formed during calcination remained immobilized on silica surface ensuring large number of active acid sites and excellent catalytic activity despite POM decomposition
- DS catalysts showed higher catalytic activity, stability against leaching and recyclability in esterification of levulinic acid with EtOH
- The newly developed materials could be applied as green, low cost and efficient heterogeneous catalysts with both Lewis and Brønsted acidity in esterification reactions for preparation of biofuels and biolubricants.

ACKNOWLEDGEMENTS

- Prof. Margarita Popova
 Laboratory of Microporous and Mesoporous Materials, IOCCP, BAS
- Assoc. Prof. Vesselina Mavrodinova
 Laboratory of Microporous and Mesoporous Materials, IOCCP, BAS
- Assist. Prof. Hristina Lazarova
 Laboratory of Microporous and Mesoporous Materials, IOCCP, BAS
- Prof. Yuri Kalvachev
 Institute of Catalysis, BAS
- Dr. Charlotte Martineau-Corcos

Institut Lavoisier de Versailles, Université de Versailles St. Quentin en Yvelines, Versailles, France

Financial support

Grants: UNA-17/2005 and DRNF-02-13/2009, «Bulgarian NMR Centre – Development of Advanced and Effective Research Infrastructure for NMR Analysis of Bio- and Nanomaterials»

Grants: Д01-155/28.08.2018 и Д01-284/17.12.2019, **INFRAMAT**: Distributed infrastructure of centers for synthesis and characterization of new materials and conservation of archeological and ethnographic artefacts

MINISTRY OF EDUCATION AND SCIENCE